Representation theory of p-adic groups and canonical bases
نویسندگان
چکیده
In this paper, we interpret the Gindikin–Karpelevich formula and the Casselman–Shalika formula as sums over Kashiwara–Lusztig’s canonical bases, generalizing the results of Bump and Nakasuji (2010) [7] to arbitrary split reductive groups. We also rewrite formulas for spherical vectors and zonal spherical functions in terms of canonical bases. In a subsequent paper Kim and Lee (preprint) [14], we will generalize these formulas to p-adic affine Kac–Moody groups. © 2011 Elsevier Inc. All rights reserved.
منابع مشابه
Intersection Cohomology Methods in Representation Theory*
In recent years, the theory of group representations has greatly benefited from a new approach provided by the topology of singular spaces, namely intersection cohomology (IC ) theory. Let G be a connected reductive algebraic group over an algebraically closed field (which will be assumed to be C unless otherwise specified) ; although G itself is clearly a non-singular variety, the study of the...
متن کاملProject Summary: quantizing Schur functors
Geometric complexity theory (GCT) is an approach to P vs. NP and related problems in complexity theory using algebraic geometry and representation theory. A fundamental problem in representation theory, believed to be important for this approach, is the Kronecker problem, which asks for a positive combinatorial formula for the multiplicity gλμν of an irreducible representation Mν of the symmetr...
متن کاملSome bounds on unitary duals of classical groups - non-archimeden case
We first give bounds for domains where the unitarizabile subquotients can show up in the parabolically induced representations of classical $p$-adic groups. Roughly, they can show up only if the central character of the inducing irreducible cuspidal representation is dominated by the square root of the modular character of the minimal parabolic subgroup. For unitarizable subquotients...
متن کاملThe Bruhat-Tits building of a p-adic Chevalley group and an application to representation theory
This thesis is concerned with the structure theory of generalized Levi subgroups G of simply-connected Chevalley groups defined over a finite extension of a p-adic field. We present a geometric parameterization of this structure known as the Bruhat-Tits building B(G). The building facilitates visualizing and reasoning about the structure ofG, and therefore has applications to all things related...
متن کاملContinuous representation theory of p-adic Lie groups
In this paper we give an overview over the basic features of the continuous representation theory of p-adic Lie groups as it has emerged during the last five years. The main motivation for developing such a theory is a possible extension of the local Langlands program to p-adic Galois representations. This is still very much in its infancy. But in the last section we will describe a first appro...
متن کامل